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1 Use the method of differences to fi@g, where

N2
1
SN:gn(n+1)' [3]
Deduce the value of ling. [1]

N—oo

2 Given that
X =1t-sint and y=1-cost,

where O< t < 2x, show that

d’y 1 1
@ = _Z Coseé(zt). [5]

3 The pointsA, B, C have position vectorai, bj, ck respectively, wher@, b, c are all positive. The
plane containindj, B, C is denoted by1.

(i) Find a vector perpendicular 1a. [3]

(i) Find the perpendicular distance from the origidipin terms ofa, b, c. [3]

4  Show that the sum of the cubes of the roots of the equation
x>+ AX+1=0
is 3. [3]
Show also that there is no real value offor which the sum of the fourth powers of the roots is

negative. [3]

5 A curve is defined parametrically by
x=t—8t  and y= %"t%.
The arc of this curve joining the point whetre- 1 to the point wheré = 4 is denoted byC.
(i) Show that the length o is 11. [5]

(i) Find, correct to 3 significant figures, the area of the surfgreerated whef is rotated through
one complete revolution about tleaxis. [3]
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6 The curveC has polar equation

whereZr < 0 < 7.
(i) Draw a sketch o€C. [3]
(i) Show that the area of the region bounded by the@iﬁe%n andCis

n(2-1n2). [5]

7 The planedI, andIl, have equations
X+2y—-3z+4=0 and X+y-4z-3=0
respectively. Show that, for all values of every point which is in botlil, andIT, is also in the plane

X+2y—-3z+4+A(2X+y—-4z-3)=0. [2]

The planed], andIl, meetin the lind.

(i) Find the equation of the plarié, which passes throughand the point whose position vector is
ak. [3]

(i) Find the value ot if I, is perpendicular tdL. [3]
8 Theintegral , wherenis a non-negative integer, is defined by

1
| = L e *(1-x)"dx.

(i) Showthat ,, =1-(n+1)I. [3]
(i) Use induction to show thdj is of the formA_ + Bne‘l, whereA_ andB_ are integers. [4]
(iif) ExpressB_interms ofn. [2]
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4

Find the eigenvalues and a corresponding set of eigengeattine matrixM given by

a 2 1
M = (O b —1) ,
0 O c
wherea, b, c are all different.

Find a matrixP and a diagonal matri® such that

(M —kD)"=PDP?,

wherel is the identity matrixk is a constant scalar amds a positive integer.

[You are not required to evaluake?.]

(i) Write down, in any form, all the complex roots of the equation

w = 1.

(i) Explain why the equation

(z+2)12= 12 *)

has exactly 10 non-real roots and show that they may be esquies the form

~1-icot(tkn),
wherek = £1, £2, 3, +4, 5.
(iii) Show that
{-1-icot(Skr) {-1+icot(s5kr)} = coseé(Ekn).
(iv) Given that the product of the roots of (*)4€2%, find the value of

Sinz(lizn) Sinz(l%n) Sinz(l%n) Sinz(lizn) Sinz(l%n).
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11 The matrixA is defined by

1 3 2
A:(l -1 —1).
2 2 0

Find the rank ofA, distinguishing between the caseg 1 and6 = 1.

Consider the systel8 of equations:
X+3y+2z=1,
X- y- z=0,
2X+2y+0z=30+¢ - 2.

(i) Show that ifé # 1 thenShas a unique solution. Find this solution in the caseO.

(i) Show that ifd = 1 and¢ = 0 thenShas an infinite number of solutions.

(iii) Show that ifg = 1 and¢ # O thenShas no solution.

12 Answer onlyone of the following two alternatives.
EITHER

The curvel”, which has equation

_a®+bx+c
X2+ pX+q '

has asymptotes= 1, x = 4 andy = 2. Find the values o, p andq.
It is given thatl" has a stationary point at= 2.

(i) Find the value ot.

(ii) Show that ifb # —10 thenI" has exactly 2 stationary points.
(iii) Draw a sketch of” for the case wherb = —6.
OR

It is given that

d?y dy
B2 + (2a- 1)d—x +a(a-1l)yy=2a-1+a(a-1)x,

dy

wherea is a constant. Fing in terms ofa andx, given thaty and& are both zero wher = 0.

Hence show that i > 1 theny ~ X asx — oo.

It is given that
d?z dz
oe Ty

where the constaris positive. Find lime*z.

X—00

+a@-1)z=¢€",
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