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1 Use the method of differences to findS
N

, where

SN =
N2

∑
n=N

1
n(n + 1) . [3]

Deduce the value of lim
N→∞SN . [1]

2 Given that

x = t − sint and y = 1− cost,

where 0< t < 2π, show that

d2y

dx2
= −1

4
cosec4(1

2
t). [5]

3 The pointsA, B, C have position vectorsai, bj, ck respectively, wherea, b, c are all positive. The
plane containingA, B, C is denoted byΠ.

(i) Find a vector perpendicular toΠ. [3]

(ii) Find the perpendicular distance from the origin toΠ, in terms ofa, b, c. [3]

4 Show that the sum of the cubes of the roots of the equation

x3 + λx + 1 = 0

is −3. [3]

Show also that there is no real value ofλ for which the sum of the fourth powers of the roots is
negative. [3]

5 A curve is defined parametrically by

x = t − 8t
1
2 and y = 16

3
t

3
4.

The arc of this curve joining the point wheret = 1 to the point wheret = 4 is denoted byC.

(i) Show that the length ofC is 11. [5]

(ii) Find, correct to 3 significant figures, the area of the surfacegenerated whenC is rotated through
one complete revolution about thex-axis. [3]
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6 The curveC has polar equation

r = π − θ
θ

,

where1
2
π ≤ θ ≤ π.

(i) Draw a sketch ofC. [3]

(ii) Show that the area of the region bounded by the lineθ = 1
2
π andC is

π(3
4
− ln 2). [5]

7 The planesΠ1 andΠ2 have equations

x + 2y − 3� + 4 = 0 and 2x + y − 4� − 3 = 0

respectively. Show that, for all values ofλ , every point which is in bothΠ1 andΠ2 is also in the plane

x + 2y − 3� + 4+ λ(2x + y − 4� − 3) = 0. [2]

The planesΠ1 andΠ2 meet in the linel.

(i) Find the equation of the planeΠ3 which passes throughl and the point whose position vector is
ak. [3]

(ii) Find the value ofa if Π2 is perpendicular toΠ3. [3]

8 The integralIn, wheren is a non-negative integer, is defined by

In = 
 1

0
e−x(1− x)n dx.

(i) Show thatIn+1 = 1− (n + 1)In. [3]

(ii) Use induction to show thatIn is of the formAn + Bne−1, whereAn andBn are integers. [4]

(iii) ExpressBn in terms ofn. [2]
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9 Find the eigenvalues and a corresponding set of eigenvectors of the matrixM given by

M = ( a 2 1
0 b −1
0 0 c

) ,

wherea, b, c are all different. [6]

Find a matrixP and a diagonal matrixD such that

(M − kI)n = PDP−1,

whereI is the identity matrix,k is a constant scalar andn is a positive integer. [4]

[You are not required to evaluateP−1.]

10 (i) Write down, in any form, all the complex roots of the equation

w12 = 1. [2]

(ii) Explain why the equation

(� + 2)12 = �12 (*)

has exactly 10 non-real roots and show that they may be expressed in the form

−1− i cot( 1
12

kπ),
wherek = ±1, ±2, ±3, ±4, ±5. [6]

(iii) Show that

{−1− i cot( 1
12

kπ)}{−1+ i cot( 1
12

kπ)} = cosec2( 1
12

kπ). [1]

(iv) Given that the product of the roots of (*) is−512
3

, find the value of

sin2( 1
12

π) sin2( 2
12

π) sin2( 3
12

π) sin2( 4
12

π) sin2( 5
12

π). [2]
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11 The matrixA is defined by

A = ( 1 3 2
1 −1 −1
2 2 θ

) .

Find the rank ofA, distinguishing between the casesθ ≠ 1 andθ = 1. [4]

Consider the systemS of equations:

x + 3y + 2� = 1,

x − y − � = 0,

2x + 2y + θ� = 3θ + φ − 2.

(i) Show that ifθ ≠ 1 thenS has a unique solution. Find this solution in the caseφ = 0. [3]

(ii) Show that ifθ = 1 andφ = 0 thenS has an infinite number of solutions. [3]

(iii) Show that ifθ = 1 andφ ≠ 0 thenS has no solution. [2]

12 Answer onlyone of the following two alternatives.

EITHER

The curveΓ , which has equation

y = ax2 + bx + c

x2 + px + q
,

has asymptotesx = 1, x = 4 andy = 2. Find the values ofa, p andq. [4]

It is given thatΓ has a stationary point atx = 2.

(i) Find the value ofc. [3]

(ii) Show that ifb ≠ −10 thenΓ has exactly 2 stationary points. [2]

(iii) Draw a sketch ofΓ for the case whereb = −6. [4]

OR

It is given that

d2y

dx2
+ (2a − 1)dy

dx
+ a(a − 1)y = 2a − 1+ a(a − 1)x,

wherea is a constant. Findy in terms ofa andx, given thaty and
dy
dx

are both zero whenx = 0. [8]

Hence show that ifa > 1 theny ≈ x asx → ∞. [2]

It is given that

d2�
dx2

+ (2a − 1)d�
dx

+ a(a − 1)� = ex,

where the constanta is positive. Find lim
x→∞ e−x�. [3]
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